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ABSTRACT

The assessment of turbulence model performance in predicting 
ow �elds that are

directly relevant to industrial needs has become increasingly important. In aerody-

namics, many problems exist for which the performance of some turbulence models is

ambiguous at best and incorrect at worst. The application of many di�erent turbu-

lence models to a particular problem is a lengthy process that can lead to confusing

results simply as a result of the volume of data produced. Given the motivation

to develop turbulence models that do have some applicability to solving industry's

problems, this study focuses on the prediction of airfoil characteristics, including

lift and drag, over a range of Reynolds numbers. Two di�erent turbulence models,

which represent two di�erent types of models, are tested. The �rst is a standard

isotropic eddy-viscosity two-equation K � " model, and the second is an explicit al-

gebraic stress model (EASM). The EASM model is an extension of the K � " model

because it introduces nonlinear dependency of the Reynolds stresses on the mean

strain and rotation-rate tensors and, therefore, better accounts for the turbulent

stress anisotropy more e�ectively. The turbulent 
ow �eld over a general-aviation

airfoil (GA(W)-2) at three Reynolds numbers ranging from 2:1 � 106 to 6:3 � 106 is

studied. Experimental pressure coe�cients are compared with model predictions for

Re = 4:3� 106. At each Reynolds number, predicted lift and drag values at di�erent

angles of attack are compared with experimental results, and predicted variations of

stall locations with Reynolds number are compared with experimental data. Finally,

the size of the separation zone predicted by each model is analyzed, and correlated

with the behavior of the lift coe�cient near stall. In summary, the EASM model is

able to predict the lift and drag coe�cients over a wider range of angles of attack than

the K � " model for the three Reynolds numbers studied. However, both models are

unable to predict the correct lift and drag behavior near the stall angle, and for the

Re = 2:1 � 106 case, the K � " model did not predict separation on the airfoil near

stall.



I INTRODUCTION

The optimization of the performance and, therefore, the design of wing con�gu-

rations is a challenging task that requires e�cient use of numerical prediction tech-

niques. In fact, an accurate predictive technique is a mandatory requisite. The

purpose of this study is to assess the predictive capabilities of two types of turbulence

models for the simpler two-dimensional airfoil con�gurations. The two types of mod-

els represented are an isotropic eddy-viscosity K � " model and an explicit algebraic

stress model (EASM). They are applied to the 
ow over a general-aviation airfoil at

various angles of attack and Reynolds numbers.

One problem with this type of study is the lack of detailed information in regard to

the experimental setup, as well as the lack of necessary information about initial and

in
ow conditions. Nevertheless, some reports exist that provide su�cient information

so that a study such as the one outlined here can be performed. One such study1

details the aerodynamic characteristics of a 13-percent-thick general-aviation airfoil at

various angles of attack and Reynolds numbers; the results of this study are used here

to determine the ability of the models to predict some characterizing features of airfoil


ows, such as the lift and drag coe�cients and the pressure coe�cient distributions

at various 
ow conditions.

Other studies have examined the performance of K�" and algebraic stress models

in predicting the aerodynamic characteristics of airfoil 
ows. Although the exact form

of the two-equation models and ASM's di�ers between these studies (as well as this

one), the intent is to examine whether the increased physics introduced into the

ASM have a signi�cant impact on the results. Because the ASM represents stress

anisotropy e�ects better, its utilization should give some indication of whether a full

Reynolds stress closure is worthwhile. Davidson and Rizzi2 applied a two-equation

model and an ASM to the ONERA-A airfoil 
ow�eld at a single chord Reynolds

number Re of 2:1� 106. Their results showed that the ASM predicted the variation

of Cl and the stall location better than the K � " model (and the Baldwin-Lomax

model, which was also tested). In addition, the calculated pressure and skin-friction

coe�cients agreed very well with the experimental results.

Recently, Davidson3 performed a follow-on study with a K � " and a Reynolds

stress model at the same conditions as the Davidson and Rizzi work. Once again, the

higher order model outperformed the isotropic eddy-viscosity K � " model. No stall

was predicted by the K � " model, whereas stall location was accurately predicted

by the Reynolds stress model, as were the velocity pro�les on the airfoil and in the

wake.
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Lien and Leschziner4 compared the performance of a K�", a Reynolds stress, and

a nonlinear K � " (ASM) model on the ONERA-A airfoil as well, at the same chord

Reynolds number used in the Davidson studies. Their study included the development

of an improved ASM and Reynolds stress model to better predict the 
ow �eld. Their

results suggested that the Reynolds stress model outperforms both the K � " and

nonlinear K � " models in predicting the aerodynamic characteristics of the airfoil.

In the present study, the comparisons include the e�ects of Reynolds-number

variation. In this study, no attempt is made to optimize the models for better pre-

dictive capabilities; the K � " model of Speziale et al.5 and an ASM of Gatski and

Speziale6 are used. The algebraic stress model6 is an explicit polynomial represen-

tation that is discussed in the next section. Comparisons of predicted and mea-

sured pressure coe�cients are shown at two angles of attack at Re = 4:3 � 106. For

Re = 2:1� 106; 4:3� 106, and 6:3� 106, the variation of lift and drag coe�cients Cl

and Cd is shown as a function of angle of attack � and Cl, respectively. The variation

of stall angle with Reynolds number is also examined, and the predicted results are

compared with experimental results. Finally, to better understand the physics behind

the stall-angle variation predicted by the K � " model and the EASM, comparative

plots of separation-zone size are shown for the three Reynolds numbers. These results

provide an indication of the capabilities of the models, and a direction for the next

step in evaluating model performance and, ultimately, in improving the models.

II Theoretical Formulation

The mean quantities of an incompressible turbulent 
ow are obtained from a

solution of the Reynolds-averaged Navier-Stokes equations given in nondimensional

form as
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where ui and p are the mean velocity and pressure, respectively, and Re is the

Reynolds number based on free-stream conditions and airfoil chord. The right-hand

side of the equation also contains both the viscous stress tensor �ij, which is propor-

tional to the mean strain rate, and the turbulent second-moment correlation tensor

�ij � u0iu
0

j, which requires closure.

In the incompressible formulation for the mean motion, only the turbulent second-

moment Reynolds stress tensor needs to be modeled. For the higher order closures,
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it is best to begin with the transport equation for the �ij correlation:
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where the right-hand side represents the rate of change of �ij produced by the tur-

bulent production �Pij , the deviatoric part of the pressure strain-rate correlation �d
ij,

the turbulent dissipation rate "ij, and the turbulent di�usion �Dt
ijk. These terms are

given by
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In the incompressible formulation, the deviatoric part of the dissipation rate is

generally absorbed into the pressure-strain correlation to account for any anisotropic

dissipation e�ects. However, models for the anisotropic dissipation rate "ij can be

derived that negate this assimilation into the pressure-strain correlation.7, 8 When the

deviatoric part of the tensor dissipation rate is assimilated into the pressure-strain

correlation, the isotropic dissipation rate " is obtained from a modeled transport

equation.

The common high-Reynolds-number form of the isotropic solenoidal dissipation-

rate equation that is used is given by
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where the �rst and second terms on the right side are the production and destruction

of dissipation, respectively, and the last term is the viscous di�usion. The turbulent

dissipation-rate di�usion term is modeled for the two-equation formulation used in

this study as

�Dt
"j =
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(5)
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The closure constants C"1, C"2, and �" must be speci�ed to complete the closure.

This brief outline completes the speci�cation of the transport equations for the

solution of the second-moment closure model. To this point, no speci�c models have

been proposed for terms such as the pressure-strain correlation or turbulent di�usion.

Many models exist in the literature; the reader is referred to the many review articles

on the subject.9�12

From an engineering standpoint, this second-moment formulation is not without

risk. Extensive computer resources and sophistication are necessary in implementing

and numerically solving these equations over a two-equation formulation; furthermore

no unambiguous assessment has been made of the range of validity of the models,

which is, of course, unfortunate because these equations represent the inclusion of

extensive physics and mathematical rigor that should lead to improved predictive

technology. For this reason, an intermediary level can be introduced into the hierarchy

of closure models that incorporates the key features of the second-moment closures

but does not involve more e�ort than a simple isotropic eddy-viscosity two-equation

model.

An e�ective compromise between the full second-moment closure and the two-

equation model is the ASM . This approach extracts an algebraic relationship between

the turbulent Reynolds stress and mean velocity �eld from the Reynolds stress formu-

lation just discussed. The models are derivable from equilibrium hypotheses imposed

on both the convective and di�usive terms. The convective equilibrium hypothesis is

represented through the stress anisotropy tensor

bij =

�
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2

3
K�ij
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(6)

and is given by
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where K = �ii=2. The equilibrium hypothesis for the di�usive terms is given by
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If we use these constraints, as well as the de�nition of the stress anisotropy, and

consider the fact that the mean velocity gradient is the sum of the strain- and rotation-

rate tensors (Sij and W ij, respectively), then Equation (7) can be expanded as
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where �P = �Pii=2, Sij = (@ui=@xj + @uj=@xi)=2, and W ij = (@ui=@xj � @uj=@xi)=2.

This relation is the traditional starting point for the algebraic stress formulation. The

pressure-strain correlation model �d
ij of Speziale, Sarkar, and Gatski (SSG)13 is used

in Equation (9) to close the equation.

For a two-dimensional 
ow, the exact integrity basis polynomial representation6

of Equation (9) is given by
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For the SSG model,13 these coe�cients are

C1 = 6:8; C2 = 0:36; C3 = 1:25; C4 = 0:40; C5 = 1:88 (13)

The application of the model to a variety of compressible bump and airfoil 
ows14

has shown that its robustness is diminished by using the C�

� coe�cient given in Equa-

tion (12). The robustness diminishes because during the initial transient phases and

in the free-stream region the value of C�

� attains values < 0:2�1 � 0:023. This low

value of C�

� causes regions of high shear to form to maintain the turbulence, which

in turn leads to numerical instabilities. To avoid these problems, a modi�ed form of

Equation (10) is used:
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where C�

� is now given by15
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3(1 + �2) + 0:2(�6 + �6)
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�1 (15)
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and ���t is now introduced and de�ned by

���t = C��
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"
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with

C��
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For large values of � and �, C�

� and C��

� are limited by 0:2�1 and 0, respectively.

In near equilibrium conditions, Equation (15) and (17) reduce to the value given in

Equation (12).

The nonlinear algebraic constitutive equation given in Equation (14) is then cou-

pled with an incompressible two-equation formulation. For the K � " formulation,

the governing equations are subsets of the second-order formulation shown earlier in

Equation (3) and (4). These governing equations are given by15
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and
C�l = 0:081; �k = 1:0; C"1 = 1:44; C"2 = 1:83

�" =
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(C"2 � C"1)
q
C�l

; � = 0:41
(19c)

where u� is the shear velocity and y is taken as the distance normal to the surface.

III RESULTS AND DISCUSSION

An isotropic eddy-viscosity two-equation model and a nonlinear algebraic stress

model are evaluated based on their performance in predicting turbulent 
ow over

a 13 percent-thick general-aviation airfoil (GA(W)-2). The isotropic eddy-viscosity

K � " model of Speziale, Abid, and Anderson (SAA)5 is one of the models; the

other is the explicit algebraic stress model (EASM) presented in the last section. The

incompressible (M1 = 0:15) experimental data of McGhee et al.1 is used to assess
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the models in predicting the aerodynamic characteristics of the airfoil over a range of

chord Reynolds numbers.

In the three cases studied (Re = 2:1 � 106, 4:3 � 106, and 6:3 � 106), the exper-

imental transition point is �xed at 7.5 percent chord. In the computations, such a

forced transition is di�cult to implement in an unambiguous manner; however, in the

computations, because transition occurred near the experimental transition point, no

additional forcing was necessary.

Pressure variations over the airfoil at Re = 4:3 � 106 at angles of attack of 0�

and 18� are shown in Figure 1. At � = 0�, both models predict essentially the same

pressure distribution in the aft portion of the airfoil. Near the leading edge on the

upper surface, the acceleration of the 
ow predicted by the K � " model is stronger

than that predicted by the EASM; and on the lower surface a weaker acceleration

is predicted by the K � " model. In both cases, the EASM is more accurate in

predicting the experimental results. At the higher angle of attack, the predictions

from both models are similar and replicate the experimental results well.

An important aspect of this study is to assess the ability of the models to correctly

reproduce the lift and drag characteristics of the airfoils at di�erent angles of attack

and at di�erent Reynolds numbers. Figure 2 shows the computed lift and drag

coe�cients for various angles of attack (� = 0�; 8�; 14�; 16�, and 18�) at Re =

2:1 � 106. At this chord Reynolds number, both models correctly predict the stall

location; however, the EASM performs better than the K � " model in predicting

the magnitude of Cl; the largest departure from the experimental values occurs at

the higher angles of attack. This result is in contrast to the previous computational

studies2�4 on the ONERA-A airfoil at the same Reynolds number. In these earlier

studies, the K � " model was unable to accurately predict the correct stall angle,

and, in fact, did not predict stall at all over the range of angle of attack examined.

This implies that the details of the airfoil shape are important factors in assessing

whether a given turbulence model can predict a key aerodynamic characteristic of the

airfoil.

The variation of Cd with Cl is shown in Figure 2(b). Note that the drag in the

experiment was determined from a wake-rake (1.17 chords high) survey located 1

chord length downstream of the airfoil trailing edge. In the computation, the drag

was deduced from the pressure and viscous force distribution along the airfoil. Nev-

ertheless, at � = 0�, and to a lesser extent � = 8�, the computational results compare

reasonably well with experimental results. However, at higher angles of attack, the

computational results are quantitatively di�erent than those of the experiment. It
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is not possible to verify whether the wake-rake in the experiment was su�ciently far

downstream to completely capture the entire wake region at the higher angles of at-

tack. An analysis of the computed 
ow �eld at 1 chord downstream from the trailing

edge indicated that the rake would not have been su�cient to span the entire wake re-

gion. This would have led to an underprediction of the drag. Because the experiment

was performed in a wind tunnel which was approximately 3.75 chords high, while

the computations were performed in a free-�eld with computational boundaries at

15 chords, the possibility arises that in the experiment the rake survey was adequate

because the wall boundaries would require the 
ow to turn parallel to the walls and

thus modify the wake. Unfortunately, it is not possible to conclusively isolate the

cause of this drag prediction discrepancy at the higher angles of attack within the

scope of the present study.

Figure 3 shows the predicted Cl and Cd for Re = 4:3� 106. At the lower angles of

attack (� = 0� and 8�), the EASM and to a slightly lesser extent the K � " model,

does a good job in predicting Cl. At higher angles of attack (� = 16�; 18�; 20�, and

22�), both models do a poor job in predicting Cl. At � = 16� and 18�, both models

yield the same Cl, but at � = 20� and 22�, the EASM prediction for Cl is less than

that for the K � " model and is closer to the experimental results. Overall, neither

model is capable of accurately predicting the Cl near stall.

As at the lower Reynolds number, Cd is predicted reasonably well at � = 0� and

8�; however, at the higher angles of attack, the predictions di�er signi�cantly. The

previous discussion on the Cd predictions at the lower Reynolds number is, of course,

still applicable and would signi�cantly contribute to any discrepancy.

At the highest Reynolds number studied (Re = 6:3� 106), the trends for both Cl

and Cd are the same as for Re = 4:3� 106. Figure 4(a) shows that at � = 0� and 8�,

both models correctly predict the Cl; at the larger angles of attack (� = 15�; 17�; 19�,

and 21�), neither model accurately predicts the Cl levels. The EASM yields results

that are closer to the experimental levels than those of theK�" model; however, these

predictions are still not acceptable. In addition, the stall angle predicted with the

EASM is shifted slightly from both theK�" model predictions and the experimental

value.

Consistent with results at the other two Reynolds numbers, the comparisons of

the Cd predictions shown in Figure 4(b) are disappointing. At the higher angles of

attack, neither model agrees with the experimental Cd results.

These results indicate that the turbulence models used in this study are incapable

of predicting the correct airfoil aerodynamic characteristics at higher angles of attack
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over the Reynolds-number range studied. A clearer picture of this Reynolds-number

scaling e�ect is shown in Figure 5 in which the observed experimental behavior can

be seen to be linear over the range of Reynolds-numbers studied. The K � " model

displays neither the correct slope nor linear behavior in this region, which suggests

that a key physical element is not being correctly incorporated into either the calcula-

tion or the turbulence model. The EASM also predicts the incorrect slope; however,

the variation across the Reynolds-number range is much closer to linear than for

the K � " model. Nevertheless, in both computations the qualitative features are

predicted inaccurately.

An explanation for the Clmax predictions can be obtained from an analysis of the

separation zone at the trailing edge of the airfoil. Unfortunately, the experimental

study did not include any measurements or visualization of the 
ow-�eld near the

airfoil trailing edge. Figure 6 shows the separation zone predicted by each model along

the trailing edge of the upper surface near the stall angle of the EASM . AtRe = 2:1�

106, the isotropic model does not predict a separation zone along the surface which is

consistent with the results of Lien and Leschziner4; however, the EASM is found to

predict separation along the airfoil. When compared to Figure 2, it is seen that the

EASM performs reasonably well in reproducing both the qualitative and quantitative

features of the experiment up to the stall angle. As angle of attack increases, both

models overpredict the Cl value; however, with the EASM predictions, are in better

agreement with the experimental results. The lack of a predicted separation zone

along the airfoil by the K � " model suggests that the earlier studies2�4 at this

Reynolds number may have completely missed the correct 
ow behavior along the

upper surface.

Figure 6 shows separation zones predicted along the surface by both models at

the intermediate Reynolds number Re = 4:3 � 106. Figure 3 shows in this case that

the K�" model predicts the stall angle more accurately; the EASM overpredicts the

separation zone at this Reynolds number (Fig. 6). This correlation of separation-zone

size and lift coe�cient suggests that at higher angles of attack both models grossly

overpredict the size of the separation zone near the trailing edge. At this point in the

analysis, the results are ambiguous. At Re = 2:1 � 106, the K � " model does not

predict separation along the airfoil and, therefore, poorly predicts the Cl distribution

near stall. However, at Re = 4:3 � 106 the EASM overpredicts the separation-zone

size and, therefore, underpredicts the Cl distribution near stall.

The results for Re = 6:3 � 106 are also shown in Figure 6. In this case, the

EASM more closely approximates the experimental Cl distribution near stall (Fig.
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4), although the stall angle is underpredicted by both models. Thus, the size of the

separation zone is underpredicted by the K�" model (Fig. 6). Because both models

overpredict the Cl distribution at angles of attack greater than the stall angle, it

can be assumed that at these higher angles of attack the separation-zone size would

be underpredicted by both models. The reduction in separation-zone size near the

trailing edge, between the Re = 4:3 � 106 and 6:3 � 106 cases, correlates with the

decrease in Clmax shown in Figure 5.

The results presented in this study have shown that neither the isotropic eddy-

viscosity K � " model nor the EASM accurately predict the lift and drag coe�cients

over a range of Reynolds numbers and angles of attack. However, areas in which the

models do perform well relative to one another and in comparison with experiment

have been identi�ed. Of course, other two-equation K � " models and other ASM's

are available for testing; however, while the quantitative results may change slightly,

the overall qualitative performance characteristics are not expected to change signif-

icantly. The question then remains to identify which aspect of 
ow-�eld physics is

not being properly modeled. Unfortunately, with the limited amount of mean �eld

experimental data available this becomes problematic.

Although the turbulence models themselves may be inadequate, other dynamic

features of the 
ow also may not have been properly accounted for and may need to

be investigated. One such feature of the experimental 
ow �eld, which was not incor-

porated into the present study, is the unsteady shedding from the trailing edge that

occurred at and above the intermediate chord Reynolds number (R. J. McGhee, pri-

vate communication). The present numerical procedure does not solve the governing

equations in a time-accurate manner and as such cannot give a true representation

of the time-dependent behavior near the airfoil trailing edge. This unsteadiness may

a�ect the separation-zone size, which would result in a di�erent average picture of

the airfoil characteristics. Some evidence that an important dynamic feature of the


ow �eld has been omitted from the calculations can be seen in Figure 5. The lin-

ear behavior of Clmax versus Re displayed between Re = 2:1 � 106 and 4:3 � 106

(and throughout the Reynolds-number range for the experimental data) is lost at the

higher Reynolds number, which suggests that some aspect of the physics may have

been omitted.

IV CONCLUDING REMARKS

This purpose of this study was to begin a systematic evaluation of the predictive

capabilities of two distinct types of turbulence closure models in predicting the aero-
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dynamic characteristics of airfoils at di�erent Reynolds numbers. One of the models

was an isotropic eddy-viscosityK�" model; the other was an explicit algebraic stress

model (EASM). These two models were computationally equivalent in both time and

memory requirements but were based on signi�cantly di�erent physics. As such, the

study was not intended to focus on a particular turbulence model within each type

but on the predictive capabilities of a particular type of model. The selection of

a di�erent model within each type may have yielded slightly di�erent quantitative

results, but the overall conclusions would not have di�ered signi�cantly.

Neither type of model accurately computed the lift and drag characteristics over

the Reynolds-number range studied. The EASM more closely predicted the Cl dis-

tributions over a wider range of angle of attack for a particular Reynolds number but

was unable to accurately predict the distributions near stall. A similar conclusion

was reached for prediction of the drag coe�cient over the Reynolds-number range

studied, although other factors related to the di�erences between the computational

and experimental problems may explain some of these.

The separation zone at the airfoil trailing edge near stall was also examined at

the three Reynolds numbers. The predicted separation-zone sizes varied signi�cantly

among the models; these results were correlated with the lift distributions at the

three Reynolds numbers. Unfortunately, no unique feature could be identi�ed that

would indicate the reason for the poor predictive performance of the models at higher

angles of attack. However, one possible key feature of the experimental study, that

has not been accurately represented in this study is the unsteady shedding from the

airfoil trailing edge. Shedding would a�ect the separation-zone size predicted by the

di�erent models and could lead to di�erent average values for Cl and Cd. The next

phase of this study will address this issue by performing these same calculations with

a time-accurate numerical solver.
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Figure 1. Pressure variation around airfoil at � = 0� and 18� with Re = 4:3� 106.
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Figure 2. Lift and drag airfoil characteristics at Re = 2:1� 106. (a) Variation of lift
coe�cient with angle of attack, (b) Variation of drag and lift coe�cients.
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Figure 3. Lift and drag airfoil characteristics at Re = 4:3� 106. (a) Variation of lift
coe�cient with angle of attack, (b) Variation of drag and lift coe�cients.
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Figure 4. Lift and drag airfoil characteristics at Re = 6:3� 106. (a) Variation of lift
coe�cient with angle of attack, (b) Variation of drag and lift coe�cients.
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Figure 5. Variation of maximum lift coe�cient with Reynolds number.
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Figure 6. Comparison of stall separation-zone size at airfoil trailing edge.

20


